

130206515M: 100 pruebas por kit 130606515M: 50 pruebas por kit 130706515M: 30 pruebas por kit

MAGLUMI® Lp-PLA2 (CLIA)

USO PREVISTO

El kit es un inmunoensayo de quimioluminiscencia in vitro para la determinación cuantitativa de la fosfolipasa A2 asociada a lipoproteínas (Lp-PLA2) en suero y plasma humanos con el analizador para inmunoensayo de quimioluminiscencia completamente automático de la serie MAGLUMI y el Sistema Integrado de la serie Biolumi. El ensayo se utiliza para controlar el grado de inflamación de la aterosclerosis en pacientes, y como ayuda en el diagnóstico de individuos en los que se sospecha o se ha confirmado que padecen cardiopatía coronaria y accidente cerebrovascular isquémico causado por la aterosclerosis.

■ DECLIMEN

La fosfolipasa A2 asociada a lipoproteína (Lp-PLA2), originalmente denominada acetilhidrolasa del factor activador de plaquetas plasmáticas (PAF-AH), es una enzima independiente del calcio que pertenece a la superfamilia de las fosfolipasas A2¹²². La Lp-PLA2 es una serina lipasa de 45 kDa codificada por el gen PLA2G7 y compuesta por 441 aminoácidos³⁴. Después de ser producida y secretada predominantemente por los macrófagos, aproximadamente el 80 % de la Lp-PLA2 circula unida a las lipoproteínas de baja densidad, mientras que el otro 20 % está unido a las lipoproteínas de alta densidad y las partículas de lipoproteínas remanentes¹⁵. Esta enzima cataliza la fosfatidilcolina oxidada en ácidos grasos libres no esterificados oxidados y la lisofosfatidilcolina en el plasma. Se cree que estos productos lipídicos bioactivos median los procesos inflamatorios que conducen a la aterogénesis⁵.

La Lp-PLA2 es un nuevo biomarcador de inflamación vascular específica que desempeña un papel importante en la aterogénesis y proporciona información sobre la inflamación y la estabilidad de la placa aterosclerótica. A través de numerosos estudios epidemiológicos, se demostró que la Lp-PLA2 es un predictor de riesgo independiente de eventos cardiovasculares. Actualmente, la medición de la Lp-PLA2 ha sido aprobada por la Administración de Alimentos y Medicamentos (FDA) para su uso junto con la evaluación clínica y la evaluación de riesgos del paciente como ayuda para predecir el riesgo de enfermedad coronaria y accidente cerebrovascular isquémico asociados con la aterosclerosis². Además, la Lp-PLA2 se reduce mediante un tratamiento convencional para la reducción de lípidos, lo que sugiere que este marcador puede ser una medida eficaz de la eficacia del tratamiento⁸.

■ PRINCIPIO DE LA PRUEBA

Inmunoensayo de quimioluminiscencia tipo sándwich.

La muestra, el tampón y las microperlas magnéticas recubiertas con anticuerpo monoclonal anti-Lp-PLA2 se mezclan completamente, se incuban y se realiza un ciclo de lavado después de una precipitación en un campo magnético. Luego, se agrega ABEI marcado con otro anticuerpo monoclonal anti-Lp-PLA2, los que reaccionan para formar un complejo tipo sándwich, que se incuba. Después de la precipitación en un campo magnético, el sobrenadante se decanta y, luego, se realiza un ciclo de lavado. Posteriormente, se agrega el iniciador 1 + 2 para iniciar una reacción quimioluminiscente. La señal luminosa se mide con un fotomultiplicador como unidades de luz relativas (RLU), que es proporcional a la concentración de Lp-PLA2 presente en la muestra.

■ REACTIVOS

Contenido del kit

Componente	Descripción		50 pruebas por kit	30 pruebas por kit
Microperlas magnéticas	Microperlas magnéticas recubiertas con anticuerpo monoclonal anti-Lp-PLA2 (~10,0 μg/mL) en el tampón PBS, NaN ₃ (<0,1 %).	2,5 mL	2,0 mL	1,0 mL
Calibrador bajo	Una baja concentración de antígeno Lp-PLA2 en el tampón PBS, NaN ₃ (<0,1 %).	2,5 mL	2,0 mL	2,0 mL
Calibrador alto	Una alta concentración de antígeno Lp-PLA2 en el tampón PBS, NaN ₃ (<0,1 %).	2,5 mL	2,0 mL	2,0 mL
Tampón	Tampón PBS, NaN₃ (<0,1 %).	12,5 mL	7,5 mL	4,5 mL
Marca de ABEI	ABEI marcado con el anticuerpo monoclonal anti-Lp-PLA2 (~0,500 μg/mL) en el tampón Tris-HCl, NaN ₃ (<0,1 %).	7,5 mL	4,5 mL	3,3 mL
Control 1	ntrol 1 Una baja concentración de antígeno Lp-PLA2 (250 ng/mL) en el tampón PBS, NaN ₃ (<0,1 %).		2,0 mL	2,0 mL
Control 2	Una alta concentración de antígeno Lp-PLA2 (500 ng/mL) en el tampón PBS, NaN ₃ (<0,1 %).		2,0 mL	2,0 mL
Todos los reactivos	se entregan listos para usarse.	'	•	•

Advertencias y precauciones

- Para usarse en diagnóstico in vitro.
- Solo para uso profesional.
- Siga las precauciones habituales requeridas para manipular cualquier reactivo de laboratorio.
- Se deben tomar medidas de protección personal para evitar que alguna parte del cuerpo entre en contacto con las muestras, los reactivos y los controles. Se deben cumplir con los requisitos de operación locales del ensayo.
- Se requiere una técnica hábil y el cumplimiento estricto del prospecto del envase para obtener resultados fiables.
- No utilice el kit después de la fecha de caducidad que se indica en la etiqueta.
- No intercambie componentes entre diferentes reactivos o lotes.
- Evite la formación de espuma en todos los reactivos y tipos de muestras (muestras, calibradores y controles).
- Todos los residuos asociados con muestras biológicas, reactivos biológicos y materiales desechables utilizados para el ensayo deben considerarse potencialmente infecciosos y
 deben desecharse en conformidad con las recomendaciones locales.
- Este producto contiene azida de sodio. La azida de sodio puede reaccionar con las tuberías de plomo o cobre para formar azidas metálicas altamente explosivas. Inmediatamente
 después de desecharlo, enjuague con un gran volumen de agua para evitar la acumulación de azida. Para obtener información adicional, consulte las hojas de datos de seguridad
 disponibles para usuarios profesionales a pedido.

Nota: Si ha ocurrido algún incidente grave en relación con el dispositivo, informe a Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe) o a nuestro representante autorizado y a la autoridad competente del Estado Miembro en el que usted se encuentre.

Manipulación del reactivo

- Para evitar la contaminación, use guantes limpios cuando trabaje con un kit de reactivos y una muestra. Cuando manipule el kit de reactivos, reemplace los guantes que estuvieron en contacto con muestras, ya que la contaminación de muestras generará resultados poco fiables.
- No utilice el kit en condiciones de mal funcionamiento; por ejemplo, el kit se filtró en la película de sellado o en otro lugar, aparece turbiedad o precipitación obvias en los reactivos (excepto en el caso de las microperlas magnéticas) o el valor de control está fuera del rango especificado reiteradamente. Si el kit se encuentra en condiciones de mal funcionamiento, comuníquese con Snibe o con nuestro distribuidor autorizado.
- Para evitar la evaporación del líquido en los kits de reactivos abiertos en el refrigerador, se recomienda que los kits de reactivos abiertos se sellen con los sellos de reactivos que se
 encuentran en el embalaje. Los sellos de los reactivos son de uso único. Si se necesitan sellos adicionales, comuníquese con Snibe o con nuestro distribuidor autorizado.
- En el transcurso del tiempo, los líquidos residuales pueden secarse en la superficie septal. Estos son, generalmente, sales secas y no tienen ningún efecto sobre la eficacia del ensayo.
- Utilice siempre el mismo analizador para un reactivo integral abierto.
- Para obtener instrucciones sobre cómo mezclar microperlas magnéticas, consulte la sección Preparación del Reactivo de este prospecto.
- Para obtener más información acerca del manejo de reactivos durante el funcionamiento del sistema, consulte las Instrucciones de operación del analizador.

Almacenamiento y estabilidad

- No congele los reactivos integrales.
- Almacene el kit de reactivos en posición vertical para garantizar una disponibilidad total de las microperlas magnéticas.
- Proteja de la exposición directa a la luz solar.

1 10to ja ao la oxposición anota a la laz solar.				
Estabilidad de los reactivos				
Sin abrir a una temperatura de entre 2 y 8 °C	hasta la fecha de caducidad indicada			
Abierto a una temperatura de entre 2 y 8 °C	6 semanas			
En el sistema	4 semanas			
Estabilidad de los controles				
Sin abrir a una temperatura de entre 2 y 8 °C	hasta la fecha de caducidad indicada			
Abierto a una temperatura de entre 18 °C y 25 °C	4 horas			
Abierto a una temperatura de entre 2 y 8 °C	6 semanas			

Congelado a -20 °C		2 meses
	Ciclos de congelado y descongelado	no más de 1 vez

PREPARACIÓN Y OBTENCIÓN DE MUESTRAS

Tipos de muestra

Solo las muestras que se indican a continuación se probaron y se consideraron aceptables.

Tipos de muestra	Tubos de recolección			
Suero	Tubos sin aditivo ni accesorios, o tubos que contengan activador de coagulación o activador de coagulación con gel.			
Plasma	Tubos con K2-EDTA o heparina sódica.			

Los tipos de muestras detallados se probaron con una selección de tubos de obtención de muestras disponibles en el mercado en el momento de la evaluación (es decir, que no se probaron todos los tubos disponibles de todos los fabricantes). Los materiales de los sistemas de recolección de muestras pueden variar según el fabricante, lo cual podría afectar los resultados de las pruebas en algunos casos. Siga cuidadosamente las instrucciones de los fabricantes de los tubos cuando utilice los tubos de recolección.

Estado de las muestras

- No utilice muestras inactivadas por calor, ni muestras burdamente hemolizadas/muestras con hiperlipidemia ni muestras con contaminación microbiana evidente.
- Asegúrese de que la formación completa de coágulos en las muestras de suero haya tenido lugar antes de la centrifugación. Algunas muestras de suero, en particular las de los pacientes que reciben un tratamiento anticoagulante o trombolítico, podrían presentar un tiempo de coagulación mayor. Si la muestra sérica se centrifuga antes de que se complete la coagulación, la presencia de fibrina podría producir resultados erróneos.
- Las muestras deben estar libres de fibrina y otras partículas.
- Para prevenir la contaminación cruzada, se recomienda usar pipetas o puntas de pipeta desechables.

Preparación para el análisis

- Inspeccione todas las muestras para detectar espuma. Elimine la espuma con un aplicador antes del análisis. Para evitar la contaminación cruzada, utilice un aplicador nuevo para cada muestra
- Las muestras congeladas deben descongelarse completamente antes de mezclarlas. Mezcle las muestras descongeladas completamente por agitación a baja velocidad o invirtiendo el contenido con suavidad. Inspeccione visualmente las muestras. Si se observan capas o estratificación, mezcle hasta que las muestras estén visiblemente homogéneas. Si las muestras no se mezclan completamente, es posible que se obtengan resultados incoherentes.
- Las muestras no deben contener fibrina, glóbulos rojos ni otros tipos de material particulado. Estas muestras pueden dar resultados fiables y deben centrifugarse antes de realizar la prueba. Transfiera la muestra clarificada a un vaso de muestra o tubo secundario para la prueba. Para las muestras centrifugadas con una capa lipídica, transfiera solo la muestra clarificada y no el material lipémico.
- El volumen de muestra necesario para una sola determinación de este ensayo es 20 µL.

Almacenamiento de muestras

Las muestras extraídas del separador, los glóbulos rojos o el coágulo pueden almacenarse hasta 4 horas a una temperatura de entre 18 °C y 25 °C o 72 horas a una temperatura de entre 2 °C y 8 °C o hasta 2 meses congeladas a -20 °C o menos. Se evaluaron muestras congeladas sometidas a hasta 1 ciclo de congelación y descongelación.

Transporte de muestras

- Envase y etiquete las muestras en conformidad con las regulaciones locales vigentes relacionadas con el transporte de sustancias infecciosas y muestras clínicas.
- No exceda las limitaciones de almacenamiento indicadas anteriormente.

Dilución de las muestras

- Las muestras, concentraciones de la Lp-PLA2 por encima del intervalo de la medición analítica, se pueden diluir a través del procedimiento de dilución manual. El índice de dilución recomendado es 1:10. La concentración de la muestra diluida debe ser >100 ng/mL.
- Para diluir manualmente, multiplique el resultado por el factor de dilución.
- Elija diluyentes aplicables o pida asesoramiento a Snibe antes de la dilución manual.

■ PROCEDIMIENTO

Materiales proporcionados

Ensayo de Lp-PLA2 (CLIA), etiquetas de control con código de barras.

Materiales necesarios (pero no proporcionados)

- Equipo de laboratorio general.
- Analizador para inmunoensayo de quimioluminiscencia completamente automático Maglumi 600, Maglumi 800, Maglumi 1000, Maglumi 2000, Maglumi 2000 Plus, Maglumi 4000, Maglumi 4000 Plus, MAGLUMI X3, MAGLUMI X6, MAGLUMI X8, o Sistema Integrado Biolumi 8000 y Biolumi CX8.
- Los accesorios adicionales de la prueba requeridos para los analizadores mencionados anteriormente incluyen: módulo de reacción, iniciador 1 + 2, concentrado de lavado, control de luz, punta y vaso de reacción. Las especificaciones de accesorios y los accesorios específicos para cada modelo se refieren a las Instrucciones de operación del analizador correspondiente.
- Utilice los accesorios especificados por Snibe para garantizar la fiabilidad de los resultados de las pruebas.

Procedimiento de ensayo

Preparación del reactivo

- Saque el kit de reactivos de la caja e inspeccione visualmente los viales integrales para detectar fugas en la película hermética o en cualquier otro lugar. Si no hay fugas, rompa la película selladora con cuidado.
- Abra la puerta del área de reactivos; sostenga la manija del reactivo para acercar la etiqueta RFID al lector RFID (durante aproximadamente 2 segundos); el zumbador emitirá un pitido; un pitido indica que la detección se realizó correctamente.
- Mantenga el reactivo introducido hasta el fondo a través del riel de reactivos vacío.
- Observe si la información del reactivo se muestra correctamente en la interfaz del software; de lo contrario, repita los dos procedimientos anteriores.
- La resuspensión de las microperlas magnéticas se realiza de forma automática cuando el kit se carga correctamente, de modo que las microperlas magnéticas se vuelvan a suspender totalmente de forma homogénea antes del uso.

Calibración del ensavo

- Seleccione el ensayo que se va a calibrar y ejecute la operación de calibración en la interfaz del área de reactivos. Para obtener información específica sobre la modificación de las calibraciones, consulte la sección de calibración de las Instrucciones de operación del analizador.
- Repita la calibración según el intervalo de calibración establecido en este prospecto.

Control de calidad

- Cuando se utilice un nuevo lote, compruebe o edite la información del control de calidad.
- Escanee el código de barras de control, seleccione la información de control de calidad correspondiente y ejecute las pruebas. Para obtener información específica sobre las modificaciones de control de calidad, consulte la sección de control de calidad de las Instrucciones de operación del analizador.

Pruebas de muestra

Después de cargar la muestra con éxito, selecciónela en la interfaz, edite el ensayo para la muestra que se va a analizar y ejecute la prueba. Para obtener información específica sobre la modificación de las muestras de pacientes, consulte la sección sobre la modificación de muestras de las Instrucciones de operación del analizador.

Para garantizar el correcto rendimiento de la prueba, siga estrictamente las Instrucciones de operación del analizador.

Trazabilidad: este método se estandarizó de acuerdo con el estándar de referencia interna de Snibe.

La prueba de calibradores específicos de ensayo permite que los valores de unidades relativas de luz (RLU) detectados se ajusten a la curva principal.

- Se recomienda repetir la calibración de la siguiente manera: Siempre que se utilice un nuevo lote de reactivo o el iniciador 1 + 2.
- Cada 14 días.
- El analizador recibió servicio técnico.
- Los valores de control están fuera del rango especificado.

Control de calidad

Se recomienda efectuar controles con el fin de determinar los requisitos de control de calidad para este ensayo; estos deben ejecutarse de manera individual para controlar el rendimiento del ensayo. Consulte las pautas publicadas para obtener recomendaciones generales de control de calidad; por ejemplo, la pauta C24 del Instituto de Normas Clínicas y de Laboratorio (CLSI, Clinical and Laboratory Standards Institute) u otras pautas publicadas9.

Se recomienda el control de calidad una vez por cada día de uso o, de acuerdo con los requisitos de acreditación o las regulaciones locales y los procedimientos de control de calidad de su laboratorio, el control de calidad se puede realizar mediante la ejecución del ensavo de Lp-PLA2;

- Siempre que el kit esté calibrado.
- Siempre que se use un nuevo lote de iniciador 1 + 2 o de concentrado de lavado.

Los controles solo son aplicables con los sistemas MAGLUMI y Biolumi, y solo se utilizan en concordancia con los mismos siete primeros números de LOTE de los reactivos correspondientes. Consulte la etiqueta para obtener información sobre cada valor objetivo y rango.

Se debe evaluar el rendimiento de otros controles para determinar su compatibilidad con este ensayo antes de utilizarlos. Se deben establecer rangos de valor adecuados para todos los materiales de control de calidad utilizados

Los valores de control deben estar dentro del rango especificado; cada vez que alguno de los controles se encuentre fuera del rango especificado, se debe repetir la calibración y se deben volver a probar los controles. Si los valores de control se encuentran repetidamente fuera de los rangos predefinidos después de una calibración exitosa, no se deben informar los resultados del paciente y se deben realizar las siguientes acciones:

- Verifique que los materiales no hayan caducado.
- · Verifique que se haya realizado el mantenimiento necesario.
- Verifique que el ensayo se haya realizado de acuerdo con el prospecto del envase.
- Si es necesario, comuníquese con Snibe o con nuestros distribuidores autorizados para obtener asistencia.

Si los controles del kit no son suficientes para el uso, solicite más controles de Lp-PLA2 (CLIA) (REF: 160201419MT) a Snibe o a nuestros distribuidores autorizados.

■ RESULTADOS

Cálculo

El analizador calcula automáticamente la concentración de Lp-PLA2 de cada muestra mediante una curva de calibración que se genera con un procedimiento de curva principal de calibración de 2 puntos. Los resultados se expresan en ng/mL. Para obtener más información, consulte las Instrucciones de operación del analizador.

Interpretación de los resultados

El rango esperado para el ensayo de Lp-PLA2 se obtuvo mediante la realización de pruebas a 256 personas aparentemente sanas en China y arrojó el siguiente valor esperado: <200 ng/mL (percentil 90).

<250 ng/mL (percentil 95).

Los resultados pueden diferir entre laboratorios debido a variaciones en la población y el método de prueba. Se recomienda que cada laboratorio establezca su propio intervalo de referencia.

■ LIMITACIONES

- Los resultados se deben analizar junto con los antecedentes médicos del paciente, el examen clínico y otros hallazgos
- Si los resultados de la Lp-PLA2 no coinciden con la evidencia clínica, se necesita realizar una prueba adicional para confirmar el resultado.
- Las muestras de pacientes que hayan recibido preparaciones de anticuerpos monoclonales de ratón para diagnóstico o tratamiento podrían contener anticuerpos humanos antirratón
 (HAMA, human anti-mouse antibody). Estas muestras podrían dar valores erróneamente elevados o bajos cuando se prueban con los kits de ensayo que emplean anticuerpos
 monoclonales de ratón^{10,11}. Es posible que se requiera información adicional para el diagnóstico.
- Los anticuerpos heterófilos en suero humano pueden reaccionar con inmunoglobulinas reactivas e interferir con inmunoensayos *in vitro*. Los pacientes que están habitualmente expuestos a animales o productos de suero para animales pueden ser propensos a esta interferencia y se pueden observar valores anómalos¹².
- La contaminación bacteriana o la inactivación por calor de las muestras pueden afectar los resultados de la prueba.

■ CARACTERÍSTICAS DE RENDIMIENTO ESPECÍFICAS

En esta sección se proporcionan datos de rendimiento representativos. Los resultados obtenidos en laboratorios individuales pueden variar.

Precisión

La precisión se determinó mediante el ensayo, las muestras y los controles en un protocolo (EP05-A3) del CLSI (Instituto de Normas Clínicas y de Laboratorio): duplicados en dos ejecuciones independientes por día durante 5 días en tres sitios diferentes utilizando tres lotes de kits de reactivos (n = 180). Se obtuvieron los siguientes resultados:

Muestra	Media (ng/mL) Dentro o		e la ejecución Entre ejec		cuciones	Reproducibilidad	
wuestra	(n = 180)	SD (ng/mL)	% de CV	SD (ng/mL)	% de CV	SD (ng/mL)	% de CV
Grupo de suero 1	20,278	0,822	4,05	0,541	2,67	1,337	6,59
Grupo de suero 2	198,386	7,004	3,53	2,679	1,35	10,603	5,34
Grupo de suero 3	587,225	16,751	2,85	9,520	1,62	27,111	4,62
Grupo de plasma 1	20,067	0,809	4,03	0,262	1,31	1,060	5,28
Grupo de plasma 2	199,817	7,127	3,57	1,609	0,81	8,760	4,38
Grupo de plasma 3	601,370	15,911	2,65	5,076	0,84	24,525	4,08
Control 1	252,387	9,159	3,63	5,405	2,14	13,038	5,17
Control 2	498,433	16,136	3,24	8,016	1,61	24,038	4,82

Rango lineal

Entre 3,00 ng/mL y 1000 ng/mL (definido por el límite de cuantificación y el límite superior de la curva principal).

Intervalo de notificación

Entre 2,00 ng/mL y 10 000 ng/mL (definido mediante el límite de detección y el límite superior de la curva principal × la proporción de dilución recomendada).

Sensibilidad analítica

Límite del blanco (LoB) = 1,00 ng/mL

Límite de detección (LoD) = 2,00 ng/mL

Límite de cuantificación (LoQ) = 3,00 ng/mL.

Especificidad analítica

Interferencias

La interferencia se determinó mediante el ensayo, tres muestras con distintas concentraciones de analito se enriquecieron con posibles interferencias endógenas y exógenas en un protocolo (FP7-A2) del CLSL La desviación de la medición de la sustancia de interferencia está dentro del ±10 %. Se obtuvieron los siguientes resultados:

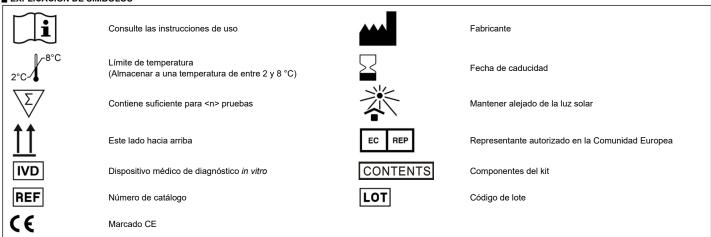
protocolo (El 7-72) del OEOI. La desviación de la medición de la sustancia de interiordida esta dentro del E10 70. Se obtavieron los siguientes resultados.							
Interferencias	Sin interferencia en niveles de hasta	Interferencias	Sin interferencia en niveles de hasta				
Bilirrubina	40 mg/dL	Factor reumatoide	1500 UI/mL				
Hemoglobina	2000 mg/dL	ANA	+++ (muestra con resultado positivo alto)				
Intralipid	1000 mg/dL	HAMA	30 ng/mL				
HSA	70 mg/mL	Fenofibrato	125 µmol/L				
Atorvastatina	140 µmol/L	Pravastatina	10 μmol/L				
Sulfato de clopidogrel	140 µmol/L	Vitamina C	227 µmol/L				
Aspirina	3300 µmol/L	Lisinopril	0,74 µmol/L				

Efecto prozona de dosis alta

No se observó un efecto prozona de dosis alta en concentraciones de Lp-PLA2 de hasta 10 000 ng/mL.

Comparación de métodos

Una comparación del ensayo de Lp-PLA2 con un inmunoensayo disponible comercialmente proporcionó las siguientes correlaciones (ng/mL):


Cantidad de muestras medidas: 1139

Bablok de aprobación: y = 1,0015x+1,2803, τ = 0,915. Las concentraciones de la muestra clínica estaban entre 11,700 ng/mL y 965,780 ng/mL.

■ REFERENCIAS

- 1. Xu R X, Zhang Y, Li X L, et al. Relationship between plasma phospholipase A2 concentrations and lipoprotein subfractions in patients with stable coronary artery disease[J]. Clinica Chimica Acta, 2015, 446: 195-200.
- 2. Lanman R B, Wolfert R L, Fleming J K, et al. Lipoprotein-associated phospholipase A2: review and recommendation of a clinical cut point for adults[J]. Preventive cardiology, 2006, 9(3): 138-143.
- 3. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target[J]. Arteriosclerosis, thrombosis, and vascular biology, 2005, 25(5): 923-931.
- 4. Cai A, Zheng D, Qiu R, et al. Lipoprotein-associated phospholipase A2 (Lp-PLA_2): A novel and promising biomarker for cardiovascular risks assessment[J]. Disease Markers, 2013, 34(5): 323-331.
- 5. Lerman A, McConnell J P. Lipoprotein-associated phospholipase A2: a risk marker or a risk factor [J]. The American journal of cardiology, 2008, 101(12): 11F-22F.
- 6. Ali M, Madjid M. Lipoprotein-associated phospholipase A2: a cardiovascular risk predictor and a potential therapeutic target [J]. 2009,5(2),159-173.
- 7. Toth P P, McCullough P A, Wegner M S, et al. Lipoprotein-associated phospholipase A2: role in atherosclerosis and utility as a cardiovascular biomarker[J]. Expert review of cardiovascular therapy, 2010, 8(3): 425-438.
- 8. Carlquist J F, Muhlestein J B, Anderson J L. Lipoprotein-associated phospholipase A2: a new biomarker for cardiovascular risk assessment and potential therapeutic target[J]. Expert review of molecular diagnostics, 2007, 7(5): 511-517.
- CLSI. Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions. 4th ed. CLSI guideline C24. Wayne, PA: Clinical and Laboratory Standards Institute; 2016.
- Robert W. Schroff, Kenneth A. Foon, Shannon M. Beatty, et al. Human Anti-Murine Immunoglobulin Responses in Patients Receiving Monoclonal Antibody Therapy [J]. Cancer Research, 1985, 45(2):879-885.
 Primus F. I. Kelley F. A. Hansen H. J. et al. "Sandwich"-type immunoassay of carcinoembryonic antigen in patients receiving murine monoclonal antibodies for diagnosis and therapy [J].
- 11. Primus F J, Kelley E A, Hansen H J, et al. "Sandwich"-type immunoassay of carcinoembryonic antigen in patients receiving murine monoclonal antibodies for diagnosis and therapy [J]. Clinical Chemistry, 1988, 34(2):261-264.
- 12. Boscato L M, Stuart M C. Heterophilic antibodies: a problem for all immunoassays [J]. Clinical Chemistry, 1988,34(1):27-33.

■ EXPLICACIÓN DE SÍMBOLOS

MAGLUMI* y Biolumi* son marcas comerciales de Snibe. Todos los demás nombres de productos y marcas comerciales pertenecen a sus respectivos propietarios.

Shenzhen New Industries Biomedical Engineering Co., Ltd.

No.23, Jinxiu East Road, Pingshan District, 518122 Shenzhen, P.R. China

Tel.: +86-755-21536601 Fax: +86-755-28292740

Shanghai International Holding Corp. GmbH (Europe)

Eiffestrasse 80, 20537 Hamburg, Germany
Tel.: +49-40-2513175 Fax: +49-40-255726