

130203014M: 100 pruebas por kit 130603014M: 50 pruebas por kit 130703014M: 30 pruebas por kit

MAGLUMI® T-Uptake (CLIA)

El kit es un inmunoensavo de quimioluminiscencia in vitro para la determinación cuantitativa de T-Uptake en suero y plasma humanos con el analizador para inmunoensavo de quimioluminiscencia completamente automático de la serie MAGLUMI y el Sistema Integrado de la serie Biolumi. El ensayo se utiliza como ayuda para evaluar la función tiroidea.

■ RESUMEN

La tiroxina (T4) es el principal producto de la glándula tiroides y actúa para regular una amplia variedad de funciones metabólicas¹. Más del 99 % de la T4 en la sangre se encuentra unida a la globulina fijadora de tiroxina (TBG, thyroxine-binding globulin) y en menor medida a la albúmina y a la prealbúmina fijadora de tiroxina (TBPA). Un cambio en la concentración de TBG puede llevar a concentraciones totales de T4 elevadas o reducídas, aunque no afecta el nivel eutiroideo de T4 libre². Estudios anteriores demostraron que diversos factores pueden provocar cambios en la TBG, lo que resulta en cambios en la T4 total, y que a su vez puede llevar a evaluaciones erróneas de la función tiroidea^{3,4}. El ensayo de T-Uptake mide los sitios de unión disponibles para tiroxina en las proteínas plasmáticas, lo que puede evaluar el estado de las proteínas fijadoras de tiroxina. La detección combinada de T-Uptake y la T4 total permite calcular el índice de tiroxina libre (FT4I) a partir del cociente de la T4 total y la TBI (resultados del ensayo de T-Uptake). El FT4I puede responder a variaciones en los niveles de la proteína fijadora de la tiroides y de T4, así como brindar un fundamento útil y preciso para el diagnóstico clínico⁵⁻⁷. Las pruebas de la función tiroidea están diseñadas para distinguir el hipertiroidismo y el hipotiroidismo del eutiroidismo. La comparación de T4 total con FT4l muestra que esta última prueba diferencia mejor entre valores normales y anormales, y puede identificar de manera fiable el estado de la función tiroidea en todos los pacientes8

■ PRINCIPIO DE LA PRUEBA

Inmunoensayo de quimioluminiscencia competitiva modificado.

La muestra, microperlas magnéticas recubiertas con el antígeno T4 libre, y el conjugado del antígeno T4 se mezclan completamente y se incuban, el antígeno T4 libre se une a los sitios de unión libres de proteínas fijadoras de tiroxina presentes en la muestra. Entonces, se añaden e incuban los ABEI marcados con el antícuerpo monoclonal anti-T4, el antígeno T4 libre restante compite con el antígeno T4 inmovilizado en las microperlas magnéticas por un número limitado de sitios de unión en el ABEI marcado con el anticuerpo anti-T4, para formar inmunocomplejos. Después de la precipitación en un campo magnético, el sobrenadante se decanta y, luego, se realiza un ciclo de lavado. Posteriormente, se agrega el iniciador 1 + 2 para iniciar una reacción quimioluminiscente. La señal luminosa se mide con un fotomultiplicador como unidades relativas de luz (RLU) que es proporcional a la concentración de T-Uptake, presente en la muestra.

■ REACTIVOS

Contenido del kit

Componente	Descripción	100 pruebas por kit	50 pruebas por kit	30 pruebas por kit
Microperlas magnéticas	Microperlas magnéticas recubiertas con el conjugado de antígeno de T4 (~2,00 μg/mL) en el tampón PBS, NaN ₃ (<0,1 %).	2,5 mL	1,5 mL	1,0 mL
Calibrador bajo	Una baja concentración del antígeno de TBG en el tampón PBS, NaN ₃ (<0,1 %).	1,0 mL	1,0 mL	1,0 mL
Calibrador alto	Una alta concentración del antígeno de TBG en el tampón PBS, NaN ₃ (<0,1 %).	1,0 mL	1,0 mL	1,0 mL
Antígeno	Antígeno de T4 en el tampón PBS, NaN ₃ (<0,1 %).	12,5 mL	7,0 mL	4,8 mL
Marca de ABEI	ABEI marcado con anticuerpo monoclonal anti-T4 (~0,250 μg/mL) en el tampón Tris-HCl, NaN ₃ (<0,1 %).	12,5 mL	7,0 mL	4,8 mL
Control 1	Una baja concentración del antígeno de TBG (0,700 TBI) en el tampón PBS, NaN ₃ (<0,1 %).	1,0 mL	1,0 mL	1,0 mL
Control 2	Una alta concentración del antígeno de TBG (1,10 TBI) en el tampón PBS, NaN ₃ (<0,1 %).	1,0 mL	1,0 mL	1,0 mL
Todos los reactivos se entregan listos para usarse.				

Advertencias y precauciones

- Para usarse en diagnóstico in vitro.
- Solo para uso profesional.
- Siga las precauciones habituales requeridas para manipular cualquier reactivo de laboratorio.
- Se deben tomar medidas de protección personal para evitar que alguna parte del cuerpo entre en contacto con las muestras, los reactivos y los controles. Se deben cumplir con los requisitos de operación locales del ensayo.
- Se requiere una técnica hábil y el cumplimiento estricto del prospecto del envase para obtener resultados fiables.
- No utilice el kit después de la fecha de caducidad que se indica en la etiqueta.
- No intercambie componentes entre diferentes reactivos o lotes.
- Evite la formación de espuma en todos los reactivos y tipos de muestras (muestras, calibradores y controles).
- Todos los residuos asociados con muestras biológicas, reactivos biológicos y materiales desechables utilizados para el ensayo deben considerarse potencialmente infecciosos y deben desecharse en conformidad con las recomendaciones locales.
- Este producto contiene azida de sodio. La azida de sodio puede reaccionar con las tuberías de plomo o cobre para formar azidas metálicas altamente explosivas. Inmediatamente después de desecharlo, enjuague con un gran volumen de agua para evitar la acumulación de azida. Para obtener información adicional, consulte las hojas de datos de seguridad disponibles para usuarios profesionales a pedido.

Nota: Si ha ocurrido algún incidente grave en relación con el dispositivo, informe a Shenzhen New Industries Biomedical Engineering Co., Ltd. (Snibe) o a nuestro representante autorizado y a la autoridad competente del Estado Miembro en el que usted se encuentre.

- Para evitar la contaminación, use guantes limpios cuando trabaje con un kit de reactivos y una muestra. Cuando manipule el kit de reactivos, reemplace los guantes que estuvieron en contacto con muestras, ya que la contaminación de muestras generará resultados poco fiables
- No utilice el kit en condiciones de mal funcionamiento; por ejemplo, el kit se filtró en la película de sellado o en otro lugar, aparece turbiedad o precipitación obvias en los reactivos (excepto en el caso de las microperlas magnéticas) o el valor de control está fuera del rango especificado reiteradamente. Si el kit se encuentra en condiciones de mal funcionamiento, comuníquese con Snibe o con nuestro distribuidor autorizado.
- Para evitar la evaporación del líquido en los kits de reactivos abiertos en el refrigerador, se recomienda que los kits de reactivos abiertos se sellen con los sellos de reactivos que se encuentran en el embalaje. Los sellos de los reactivos son de uso único. Si se necesitan sellos adicionales, comuníquese con Snibe o con nuestro distribuidor autorizado.
- En el transcurso del tiempo, los líquidos residuales pueden secarse en la superficie septal. Estos son, generalmente, sales secas y no tienen ningún efecto sobre la eficacia del ensayo.
- Utilice siempre el mismo analizador para un reactivo integral abierto.
- Para obtener instrucciones sobre cómo mezclar microperlas magnéticas, consulte la sección Preparación del Reactivo de este prospecto.
- Para obtener más información acerca del manejo de reactivos durante el funcionamiento del sistema, consulte las Instrucciones de operación del analizador.

Almacenamiento y estabilidad

- No congele los reactivos integrales
- Almacene el kit de reactivos en posición vertical para garantizar una disponibilidad total de las microperlas magnéticas.
- Proteja de la exposición directa a la luz solar

Estabilidad de los reactivos				
Sin abrir a una temperatura de entre 2 y 8 °C	hasta la fecha de caducidad indicada			
Abierto a una temperatura de entre 2 y 8 °C	6 semanas			
En el sistema	4 semanas			

Estabilidad de los controles		
Sin abrir a una temperatura de entre 2 y 8 °C	hasta la fecha de caducidad indicada	
Abierto a una temperatura de entre 10 y 30 °C	6 horas	
Abierto a una temperatura de entre 2 y 8 °C	6 semanas	
Congelado a -20 °C	3 meses	
Ciclos de congelado y descongelado	no más de 3 veces	

PREPARACIÓN Y OBTENCIÓN DE MUESTRAS

Tipos de muestra

Solo las muestras que se indican a continuación se probaron y se consideraron aceptables

Tipos de muestra	Tubos de recolección
Suero	Tubos sin aditivo ni accesorios, o tubos que contengan activador de coagulación o activador de coagulación con gel.
Plasma	K2-EDTA, K3-EDTA.

• Los tipos de muestras detallados se probaron con una selección de tubos de obtención de muestras disponibles en el mercado en el momento de la evaluación (es decir, que no se probaron todos los tubos disponibles de todos los fabricantes). Los materiales de los sistemas de recolección de muestras pueden variar según el fabricante, lo cual podría afectar los resultados de las pruebas en algunos casos. Siga cuidadosamente las instrucciones de los fabricantes de los tubos cuando utilice los tubos de recolección.

Estado de las muestras

- · No utilice muestras inactivadas por calor, ni muestras burdamente hemolizadas/muestras con hiperlipidemia ni muestras con contaminación microbiana evidente.
- · Asegúrese de que la formación completa de coágulos en las muestras de suero haya tenido lugar antes de la centrifugación. Algunas muestras de suero, en particular las de los pacientes que reciben un tratamiento anticoagulante o trombolítico, podrían presentar un tiempo de coagulación mayor. Si la muestra sérica se centrifuga antes de que se complete la coagulación, la presencia de fibrina podría producir resultados erróneos.
- Las muestras deben estar libres de fibrina y otras partículas.
- Para prevenir la contaminación cruzada, se recomienda usar pipetas o puntas de pipeta desechables.

Preparación para el análisis

- Inspeccione todas las muestras para detectar espuma. Elimine la espuma con un aplicador antes del análisis. Para evitar la contaminación cruzada, utilice un aplicador nuevo para cada muestra.
- Las muestras congeladas deben descongelarse completamente antes de mezclarlas. Mezcle las muestras descongeladas completamente por agitación a baja velocidad o invirtiendo el contenido con suavidad. Inspeccione visualmente las muestras. Si se observan capas o estratificación, mezcle hasta que las muestras estén visiblemente homogéneas. Si las muestras no se mezclan completamente, es posible que se obtengan resultados incoherentes.
- Las muestras no deben contener fibrina, glóbulos rojos ni otros tipos de material particulado. Estas muestras pueden dar resultados fiables y deben centrifugarse antes de realizar la prueba. Transfiera la muestra clarificada a un vaso de muestra o tubo secundario para la prueba. Para las muestras centrifugadas con una capa lipídica, transfiera solo la muestra clarificada y no el material lipémico.
- El volumen de muestra necesario para una sola determinación de este ensavo es 20 µL.

Almacenamiento de muestras

Las muestras extraídas del separador, los glóbulos rojos o el coágulo pueden almacenarse hasta 8 horas a una temperatura de entre 10 °C y 30 °C, 8 días a una temperatura de entre 2 °C y 8 °C o hasta 3 meses congeladas a -20 °C.

Se evaluaron muestras congeladas sometidas a hasta 1 ciclo de congelación y descongelación. Las muestras se deben mezclar completamente después de descongelarse.

Transporte de muestras

- Envase y etiquete las muestras en conformidad con las regulaciones locales vigentes relacionadas con el transporte de sustancias infecciosas y muestras clínicas.
- No exceda las limitaciones de almacenamiento indicadas anteriormente.

Dilución de las Muestras

Las muestras para las determinaciones de T-Uptake, no se pueden diluir, ya que la T4 en la sangre está presente en forma libre y unida a proteínas, las cuales están en equilibrio. Un cambio en la concentración de las proteínas de unión altera este equilibrio y, en consecuencia, también la capacidad de unión que se está midiendo.

■ PROCEDIMIENTO

Materiales proporcionados

Ensayo de T-Uptake (CLIA), etiquetas de control con código de barras.

Materiales necesarios (pero no proporcionados)

- Equipo de laboratorio general.
- Analizador para inmunoensayo de quimioluminiscencia completamente automático Maglumi 600, Maglumi 800, Maglumi 1000, Maglumi 2000, Maglumi 2000 Plus, Maglumi 4000, Maglumi 4000 Plus, MAGLUMI X3, MAGLUMI X6, MAGLUMI X8, o Sistema Integrado Biolumi 8000 y Biolumi CX8.
- Los accesorios adicionales de la prueba requeridos para los analizadores mencionados anteriormente incluyen: módulo de reacción, iniciador 1 + 2, concentrado de lavado, control de luz, punta y vaso de reacción. Las especificaciones de accesorios y los accesorios específicos para cada modelo se refieren a las Instrucciones de operación del analizador correspondiente.
- Utilice los accesorios especificados por Snibe para garantizar la fiabilidad de los resultados de las pruebas.

Procedimiento de ensayo

Preparación del reactivo

- Saque el kit de reactivos de la caja e inspeccione visualmente los viales integrales para detectar fugas en la película hermética o en cualquier otro lugar. Si no hay fugas, rompa la película selladora con cuidado.
- Abra la puerta del área de reactivos; sostenga la manija del reactivo para acercar la etiqueta RFID al lector RFID (durante aproximadamente 2 segundos); el zumbador emitirá un pitido; un pitido indica que la detección se realizó correctamente.
- Mantenga el reactivo introducido hasta el fondo a través del riel de reactivos vacío.
- Observe si la información del reactivo se muestra correctamente en la interfaz del software: de lo contrario, repita los dos procedimientos anteriores,
- La resuspensión de las microperlas magnéticas se realiza de forma automática cuando el kit se carga correctamente, de modo que las microperlas magnéticas se vuelvan a suspender totalmente de forma homogénea antes del uso.

Calibración del ensayo

- Seleccione el ensayo que se va a calibrar y ejecute la operación de calibración en la interfaz del área de reactivos. Para obtener información específica sobre la modificación de las calibraciones, consulte la sección de calibración de las Instrucciones de operación del analizador.
- Repita la calibración según el intervalo de calibración establecido en este prospecto

Control de calidad

- Cuando se utilice un nuevo lote, compruebe o edite la información del control de calidad.
- Escanee el código de barras de control, seleccione la información de control de calidad correspondiente y ejecute las pruebas. Para obtener información específica sobre las modificaciones de control de calidad, consulte la sección de control de calidad de las Instrucciones de operación del analizador.

Pruebas de muestra

Después de cargar la muestra con éxito, selecciónela en la interfaz, edite el ensayo para la muestra que se va a analizar y ejecute la prueba. Para obtener información específica sobre la modificación de las muestras de pacientes, consulte la sección sobre la modificación de muestras de las Instrucciones de operación del analizador.

Para garantizar el correcto rendimiento de la prueba, siga estrictamente las Instrucciones de operación del analizador.

Calibración

Trazabilidad: este método se estandarizó de acuerdo con el estándar de referencia interna de Snibe.

La prueba de calibradores específicos de ensayo permite que los valores de unidades relativas de luz (RLU) detectados se ajusten a la curva principal.

Se recomienda repetir la calibración de la siguiente manera: Siempre que se utilice un nuevo lote de reactivo o el iniciador 1 + 2.

- Cada 28 días.
- El analizador recibió servicio técnico.
- Los valores de control están fuera del rango especificado.

Control de calidad

Se recomienda efectuar controles con el fin de determinar los requisitos de control de calidad para este ensayo; estos deben ejecutarse de manera individual para controlar el rendimiento del ensayo. Consulte las pautas publicadas para obtener recomendaciones generales de control de calidad; por ejemplo, la pauta C24 del Instituto de Normas Clínicas y de Laboratorio (CLSI, Clinical and Laboratory Standards Institute) u otras pautas publicadas9

Se recomienda realizar un control de calidad una vez por cada día de uso o, de acuerdo con los requisitos de acreditación o las regulaciones locales y los procedimientos de control de calidad de su laboratorio, el control de calidad se puede realizar mediante la ejecución del ensayo de T-Uptake:

- Siempre que el kit esté calibrado.
- Siempre que se use un nuevo lote de iniciador 1 + 2 o de concentrado de lavado.

Los controles solo son aplicables con los sistemas MAGLUMI y Biolumi, y solo se utilizan en concordancia con los mismos siete primeros números de LOTE de los reactivos correspondientes. Consulte la etiqueta para obtener información sobre cada valor objetivo y rango.

Se debe evaluar el rendimiento de otros controles para determinar su compatibilidad con este ensayo antes de utilizarlos. Se deben establecer rangos de valor adecuados para todos los materiales de control de calidad utilizados.

Los valores de control deben estar dentro del rango especificado; cada vez que alguno de los controles se encuentre fuera del rango especificado, se debe repetir la calibración y se deben volver a probar los controles. Si los valores de control se encuentran repetidamente fuera de los rangos predefinidos después de una calibración exitosa, no se deben informar los resultados del paciente y se deben realizar las siguientes acciones:

• Verifique que los materiales no hayan caducado.

- Verifique que se haya realizado el mantenimiento necesario
- Verifique que el ensayo se haya realizado de acuerdo con el prospecto del envase.
- Si es necesario, comuníquese con Snibe o con nuestros distribuidores autorizados para obtener asistencia.

Si los controles del kit no son suficientes para el uso, solicite más controles T-Uptake (CLIA) (REF: 160201180MT) a Snibe o a nuestros distribuidores autorizados.

■ RESULTADOS

Cálculo

El analizador calcula automáticamente la concentración de T-Uptake de cada muestra mediante una curva de calibración que se genera con un procedimiento de curva principal de calibración de 2 puntos. Los resultados se expresan en TBI. Para obtener más información, consulte las Instrucciones de operación del analizador. Además, la detección combinada de T-Uptake y T4 total puede calcular el índice de tiroxina libre (FT4I) con el cociente de T4 total y TBI (resultados del ensayo de T-Uptake).

Interpretación de los resultados

El rango esperado para el ensayo de T-Uptake se obtuvo mediante la realización de pruebas a 252 personas aparentemente sanas en China, y arrojó el siguiente valor esperado: Entre 0,8 TBI y 1,3 TBI (percentiles 2,5-97,5).

FT4I (índice de tiroxina libre):

El rango esperado para el FT4I (el cociente de T4 total y TBI de MAGLUMI) se obtuvo mediante el análisis de 252 personas aparentemente sanas en China y arrojó el siguiente valor esperado: entre 50 ng/mL y 120 ng/mL (percentiles 2,5-97,5).

Los resultados pueden diferir entre laboratorios debido a variaciones en la población y el método de prueba. Se recomienda que cada laboratorio establezca su propio intervalo de referencia.

■ LIMITACIONES

- Los resultados se deben analizar junto con los antecedentes médicos del paciente, el examen clínico y otros hallazgos.
- Si los resultados de T-Uptake no coinciden con la evidencia clínica, se necesita realizar una prueba adicional para confirmar el resultado.
- El ensayo se utiliza principalmente para evaluar a individuos que se sospecha o se ha confirmado que tienen función tiroidea anormal.
- No se puede usar la prueba en pacientes que reciben tratamiento con agentes para la reducción de lípidos que contengan D-T4. Si se comprobará la función tiroidea en esos pacientes, primero se deberá interrumpir el tratamiento por entre 4 y 6 semanas para permitir que se restablezca el estado fisiológico 10.
- Los anticuerpos de las hormonas tiroideas pueden interferir con el ensayo. Por ejemplo, las anomalías de las proteínas de unión observadas con la FDH (hipertiroxinemia disalbuminémica familiar) pueden generar valores que, aunque son característicos de la enfermedad, se desvían de los resultados esperados11
- Las muestras de pacientes que hayan recibido preparaciones de anticuerpos monoclonales de ratón para diagnóstico o tratamiento podrían contener anticuerpos humanos antirratón (HAMA, human anti-mouse antibody). Estas muestras podrían dar valores erróneamente elevados o bajos cuando se prueban con los kits de ensayo que emplean anticuerpos monoclonales de ratón^{12,13}. Es posible que se requiera información adicional para el diagnóstico.
- Los anticuerpos heterófilos en suero humano pueden reaccionar con inmunoglobulinas reactivas e interferir con inmunoensayos in vitro. Los pacientes que están habitualmente expuestos a animales o productos de suero para animales pueden ser propensos a esta interferencia y se pueden observar valores anómalos¹⁴.
- La contaminación bacteriana o la inactivación por calor de las muestras pueden afectar los resultados de la prueba.

■ CARACTERÍSTICAS DE RENDIMIENTO ESPECÍFICAS

En esta sección se proporcionan datos de rendimiento representativos. Los resultados obtenidos en laboratorios individuales pueden variar.

Precisión

La precisión se determinó mediante el ensayo, las muestras y los controles en un protocolo (EP05-A3) del CLSI (Instituto de Normas Clínicas y de Laboratorio): duplicados en dos ejecuciones independientes por día durante 5 días en tres sitios diferentes utilizando tres lotes de kits de reactivos (n = 180). Se obtuvieron los siguientes resultados:

Muestra	Media (TBI)	Dentro de la ejecución		Entre ejecuciones		Reproducibilidad	
	(n = 180)	SD (TBI)	% de CV	SD (TBI)	% de CV	SD (TBI)	% de CV
Grupo de suero 1	0,307	0,012	3,91	0,007	2,28	0,018	5,86
Grupo de suero 2	0,839	0,030	3,58	0,008	0,95	0,040	4,77
Grupo de suero 3	1,703	0,052	3,05	0,040	2,35	0,083	4,87
Grupo de plasma 1	0,315	0,010	3,17	0,007	2,22	0,014	4,44
Grupo de plasma 2	0,833	0,029	3,48	0,016	1,92	0,041	4,92
Grupo de plasma 3	1,747	0,053	3,03	0,025	1,43	0,095	5,44
Control 1	0,694	0,027	3,89	0,021	3,03	0,043	6,20
Control 2	1,104	0,044	3,99	0,020	1,81	0,058	5,25

Rango lineal

Entre 0,200 TBI y 2,00 TBI (definido por el límite de cuantificación y el límite superior de la curva principal).

Intervalo de notificación

Entre 0,150 TBI y 2,00 TBI (definido por el límite de cuantificación y el límite superior de la curva principal)

Sensibilidad analítica

Límite del blanco (LoB) = 0,100 TBI.

Límite de detección (LoD) = 0,150 TBI

Límite de cuantificación (LoQ) = 0,200 TBI.

Especificidad analítica

Interferencias

La interferencia se determinó mediante el ensavo: tres muestras con distintas concentraciones de analito se enriquecieron con posibles interferencias endógenas y exógenas en un protocolo (EP7-A2) del CLSI. La desviación de la medición de la sustancia de interferencia está dentro del ±10 %. Se obtuvieron los siguientes resultados:

Interferencias	Sin interferencia en niveles de hasta	Interferencias	Sin interferencia en niveles de hasta
Bilirrubina	41 mg/dL	Salicilato de sodio	50,0 mg/dL
Hemoglobina	2000 mg/dL	Aspirina	50,0 mg/dL
Intralipid	2000 mg/dL	Ibuprofeno	50,0 mg/dL
Biotina	5 mg/dL	Paracetamol	20,0 mg/dL
HAMA	40 ng/mL	Fenitoína	5,0 mg/dL
Factor reumatoide	1500 UI/mL	Amiodarona	20,0 mg/dL
ANA	398 UA/mL	Propiltiouracilo	30,0 mg/dL
Fenilbutazona	15,0 mg/dL	-	-

Reactividad cruzada

La reactividad cruzada se determinó a través del ensayo; tres muestras con distintas concentraciones de analito se enriquecieron con posibles reactantes cruzados en un protocolo (EP7-A2) del CLSI. La desviación de la medición de la sustancia de interferencia está dentro del ±10 %. Se obtuvieron los siguientes resultados:

Reactantes cruzados	Sin interferencia en niveles de hasta	Reactantes cruzados	Sin interferencia en niveles de hasta
3-lodo-L-tirosina	10 000 μg/dL	3,3',5'-triiodo-L-tironina	200 μg/dL
3,5-diiodo-L-tirosina	1000 μg/dL	Ácido 3,3',5-triiodotiroacético	10 μg/dL
3,5-diiodo-L-tironina	250 μg/dL	Ácido 3,3',5,5'-tetrayodotiroacético	10 μg/dL
3,3',5-triiodo-L-tironina	5 μg/dL	-	-

Efecto prozona de dosis alta

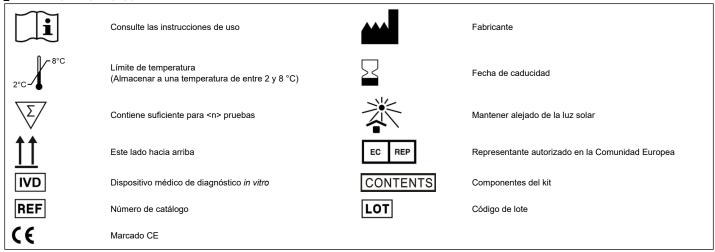
No se observó un efecto prozona de dosis alta en las concentraciones de muestra de hasta 12,0 TBI.

Comparación de métodos

Una comparación del ensayo de T-Uptake con un inmunoensayo disponible comercialmente arrojó como resultado las siguientes correlaciones (TBI):

Cantidad de muestras medidas: 120

Passing Bablok: y=1,0053x-0,0012, т=0,977. Las concentraciones de la muestra clínica estaban entre 0,211 TBI y 1,89 TBI.


REFERENCIAS

- Kirsten D. The thyroid gland: physiology and pathophysiology[J]. Neonatal network: NN, 2000, 19(8): 11-26. Keffer J H. Thyroid Diagnosis and the Progressive Thyroid Profile[J]. Labmedicine, 1975, 6(10): 23-26.
- Wenzel K W. Pharmacological interference with in vitro tests of thyroid function[J]. Metabolism-clinical and Experimental, 1981, 30(7): 717-732.
- Lazarus J H, Othman S. Review Thyroid disease in relation to pregnancy[J]. Clinical Endocrinology, 1991, 34(1): 91-98.
- Cadoff E M, Cheng C, Jerome H G, et al. Two fluorescence polarization immunoassays for total thyroxine and T-uptake quantification.[J]. Clinical Chemistry, 1995, 41(3): 466-467. Christenson R H, Duh S, Clarisse D E, et al. Thyroid function testing evaluated on three immunoassay systems[J]. Journal of Clinical Laboratory Analysis, 1995, 9(3): 178-183.
- Baloch Z W, Carayon P, Contedevolx B, et al. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease.[J]. Thyroid, 2003, 13(1).
- Dunlap D B. Chapter 142: Thyroid function tests[J]. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths, 1990.
- 9. CLSI. Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions. 4th ed. CLSI guideline C24. Wayne, PA: Clinical and Laboratory Standards Institute: 2016. 10. Bantle J P, Hunninghake D B, Frantz I D, et al. Comparison of effectiveness of thyrotropin-suppressive doses of D- and L-thyroxine in treatment of hypercholesterolemia[J]. American
- Journal of Medicine, 1984, 77(3):475-481. 11. Norio W, Hitoshi C, Chikara S, et al. A Novel Missense Mutation in Codon 218 of the Albumin Gene in a Distinct Phenotype of Familial Dysalbuminemic Hyperthyroxinemia in a
- Japanese Kindred[J]. Journal of Clinical Endocrinology and Metabolism(10):3246.
- 12. Robert W. Schroff, Kenneth A. Foon, Shannon M. Beatty, et al. Human Anti-Murine Immunoglobulin Responses in Patients Receiving Monoclonal Antibody Therapy[J]. Cancer Research, 1985, 45(2):879-85.

- 13. Primus F J, Kelley E A, Hansen H J, et al. "Sandwich"-type immunoassay of carcinoembryonic antigen in patients receiving murine monoclonal antibodies for diagnosis and therapy[J]. Clinical Chemistry, 1988, 34(2):261-264.

 14. Boscato L M , Stuart M C . Heterophilic antibodies: a problem for all immunoassays. Clin Chem 1988;34(1):27-33.

■ EXPLICACIÓN DE SÍMBOLOS

MAGLUMI® y Biolumi® son marcas comerciales de Snibe. Todos los demás nombres de productos y marcas comerciales pertenecen a sus respectivos propietarios.

Shenzhen New Industries Biomedical Engineering Co., Ltd.

No.23, Jinxiu East Road, Pingshan District, 518122 Shenzhen, P.R. China

Fax: +86-755-28292740 Tel.: +86-755-21536601

Shanghai International Holding Corp. GmbH (Europe)

Eiffestrasse 80, 20537 Hamburg, Germany

Fax: +49-40-255726 Tel.: +49-40-2513175